CMake/Utilities/std/cm/optional
Kitware Robot bdca8b01d2 Modernize: Use #pragma once in all header files
#pragma once is a widely supported compiler pragma, even though it is
not part of the C++ standard. Many of the issues keeping #pragma once
from being standardized (distributed filesystems, build farms, hard
links, etc.) do not apply to CMake - it is easy to build CMake on a
single machine. CMake also does not install any header files which can
be consumed by other projects (though cmCPluginAPI.h has been
deliberately omitted from this conversion in case anyone is still using
it.) Finally, #pragma once has been required to build CMake since at
least August 2017 (7f29bbe6 enabled server mode unconditionally, which
had been using #pragma once since September 2016 (b13d3e0d)). The fact
that we now require C++11 filters out old compilers, and it is unlikely
that there is a compiler which supports C++11 but does not support
#pragma once.
2020-09-03 09:30:21 -04:00

342 lines
6.8 KiB
C++

// -*-c++-*-
// vim: set ft=cpp:
/* Distributed under the OSI-approved BSD 3-Clause License. See accompanying
file Copyright.txt or https://cmake.org/licensing for details. */
#pragma once
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
# define CMake_HAVE_CXX_OPTIONAL
#endif
#if defined(CMake_HAVE_CXX_OPTIONAL)
# include <optional> // IWYU pragma: export
#else
# include <memory>
# include <cm/utility>
#endif
namespace cm {
#if defined(CMake_HAVE_CXX_OPTIONAL)
using std::nullopt_t;
using std::nullopt;
using std::optional;
using std::bad_optional_access;
using std::make_optional;
#else
class bad_optional_access : public std::exception
{
using std::exception::exception;
};
struct nullopt_t
{
explicit constexpr nullopt_t(int) {}
};
constexpr nullopt_t nullopt{ 0 };
template <typename T>
class optional
{
public:
using value_type = T;
optional() noexcept = default;
optional(nullopt_t) noexcept;
optional(const optional& other);
optional(optional&& other) noexcept;
template <typename... Args>
explicit optional(cm::in_place_t, Args&&... args);
template <
typename U = T,
typename = typename std::enable_if<
std::is_constructible<T, U&&>::value &&
!std::is_same<typename std::decay<U>::type, cm::in_place_t>::value &&
!std::is_same<typename std::decay<U>::type,
cm::optional<T>>::value>::type>
optional(U&& v);
~optional();
optional& operator=(nullopt_t) noexcept;
optional& operator=(const optional& other);
optional& operator=(optional&& other) noexcept;
template <
typename U = T,
typename = typename std::enable_if<
!std::is_same<typename std::decay<U>::type, cm::optional<T>>::value &&
std::is_constructible<T, U>::value && std::is_assignable<T&, U>::value &&
(!std::is_scalar<T>::value ||
!std::is_same<typename std::decay<U>::type, T>::value)>::type>
optional& operator=(U&& v);
const T* operator->() const;
T* operator->();
const T& operator*() const&;
T& operator*() &;
const T&& operator*() const&&;
T&& operator*() &&;
explicit operator bool() const noexcept;
bool has_value() const noexcept;
T& value() &;
const T& value() const&;
T&& value() &&;
const T&& value() const&&;
template <typename U>
T value_or(U&& default_value) const&;
template <typename U>
T value_or(U&& default_value) &&;
void swap(optional& other) noexcept;
void reset() noexcept;
template <typename... Args>
T& emplace(Args&&... args);
private:
bool _has_value = false;
std::allocator<T> _allocator;
union _mem_union
{
T value;
// Explicit constructor and destructor is required to make this work
_mem_union() noexcept {}
~_mem_union() noexcept {}
} _mem;
};
template <typename T>
optional<typename std::decay<T>::type> make_optional(T&& value)
{
return optional<typename std::decay<T>::type>(std::forward<T>(value));
}
template <typename T, class... Args>
optional<T> make_optional(Args&&... args)
{
return optional<T>(in_place, std::forward<Args>(args)...);
}
template <typename T>
optional<T>::optional(nullopt_t) noexcept
{
}
template <typename T>
optional<T>::optional(const optional& other)
{
*this = other;
}
template <typename T>
optional<T>::optional(optional&& other) noexcept
{
*this = std::move(other);
}
template <typename T>
template <typename... Args>
optional<T>::optional(cm::in_place_t, Args&&... args)
{
this->emplace(std::forward<Args>(args)...);
}
template <typename T>
template <typename U, typename>
optional<T>::optional(U&& v)
{
this->emplace(std::forward<U>(v));
}
template <typename T>
optional<T>::~optional()
{
this->reset();
}
template <typename T>
optional<T>& optional<T>::operator=(nullopt_t) noexcept
{
this->reset();
return *this;
}
template <typename T>
optional<T>& optional<T>::operator=(const optional& other)
{
if (other.has_value()) {
if (this->has_value()) {
this->value() = *other;
} else {
this->emplace(*other);
}
} else {
this->reset();
}
return *this;
}
template <typename T>
optional<T>& optional<T>::operator=(optional&& other) noexcept
{
if (other.has_value()) {
if (this->has_value()) {
this->value() = std::move(*other);
} else {
this->emplace(std::move(*other));
}
} else {
this->reset();
}
return *this;
}
template <typename T>
template <typename U, typename>
optional<T>& optional<T>::operator=(U&& v)
{
if (this->has_value()) {
this->value() = v;
} else {
this->emplace(std::forward<U>(v));
}
return *this;
}
template <typename T>
const T* optional<T>::operator->() const
{
return &**this;
}
template <typename T>
T* optional<T>::operator->()
{
return &**this;
}
template <typename T>
const T& optional<T>::operator*() const&
{
return this->_mem.value;
}
template <typename T>
T& optional<T>::operator*() &
{
return this->_mem.value;
}
template <typename T>
const T&& optional<T>::operator*() const&&
{
return std::move(**this);
}
template <typename T>
T&& optional<T>::operator*() &&
{
return std::move(**this);
}
template <typename T>
bool optional<T>::has_value() const noexcept
{
return this->_has_value;
}
template <typename T>
optional<T>::operator bool() const noexcept
{
return this->has_value();
}
template <typename T>
T& optional<T>::value() &
{
if (!this->has_value()) {
throw cm::bad_optional_access{};
}
return **this;
}
template <typename T>
const T& optional<T>::value() const&
{
if (!this->has_value()) {
throw cm::bad_optional_access{};
}
return **this;
}
template <typename T>
template <typename U>
T optional<T>::value_or(U&& default_value) const&
{
return bool(*this) ? **this : static_cast<T>(std::forward<U>(default_value));
}
template <typename T>
template <typename U>
T optional<T>::value_or(U&& default_value) &&
{
return bool(*this) ? std::move(**this)
: static_cast<T>(std::forward<U>(default_value));
}
template <typename T>
void optional<T>::swap(optional& other) noexcept
{
if (this->has_value()) {
if (other.has_value()) {
using std::swap;
swap(**this, *other);
} else {
other.emplace(std::move(**this));
this->reset();
}
} else if (other.has_value()) {
this->emplace(std::move(*other));
other.reset();
}
}
template <typename T>
void optional<T>::reset() noexcept
{
if (this->has_value()) {
this->_has_value = false;
std::allocator_traits<std::allocator<T>>::destroy(this->_allocator,
&**this);
}
}
template <typename T>
template <typename... Args>
T& optional<T>::emplace(Args&&... args)
{
this->reset();
std::allocator_traits<std::allocator<T>>::construct(
this->_allocator, &**this, std::forward<Args>(args)...);
this->_has_value = true;
return this->value();
}
#endif
}