修正:4.2.2-tensorboardx

This commit is contained in:
zergtant 2019-10-24 09:07:19 +08:00
parent 4eacfbad78
commit 792b4170df

View File

@ -2,16 +2,16 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1.0.0'"
"'1.3.0'"
]
},
"execution_count": 1,
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
@ -50,9 +50,12 @@
"\n",
"`pip install tensorboard`\n",
"\n",
"然后再安装tensorboardx\n",
"\n",
"`pip install tensorboardx`\n",
"\n",
"~~ 然后再安装tensorboardx ~~\n",
"\n",
"~~ `pip install tensorboardx` ~~\n",
"pytorch 1.1以后的版本内置了SummaryWriter 函数,所以不需要再安装tensorboardx了\n",
"\n",
"安装完成后与 visdom一样执行独立的命令\n",
"`tensorboard --logdir logs` 即可启动,默认的端口是 6006,在浏览器中打开 `http://localhost:6006/` 即可看到web页面。\n",
@ -94,16 +97,18 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"from tensorboardX import SummaryWriter"
"# 这里的引用也要修改成torch的引用\n",
"#from tensorboardX import SummaryWriter\n",
"from torch.utils.tensorboard import SummaryWriter"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 49,
"metadata": {},
"outputs": [
{
@ -112,7 +117,7 @@
"(1280, 853)"
]
},
"execution_count": 3,
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
@ -131,7 +136,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
@ -152,7 +157,7 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
@ -172,17 +177,17 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"x = torch.FloatTensor([100])\n",
"y = torch.FloatTensor([500])\n",
"\n",
"for epoch in range(100):\n",
" x /= 1.5\n",
" y /= 1.5\n",
" loss = y - x\n",
"for epoch in range(30):\n",
" x = x * 1.2\n",
" y = y / 1.1\n",
" loss = np.random.random()\n",
" with SummaryWriter(log_dir='./logs', comment='train') as writer: #可以直接使用python的with语法自动调用close方法\n",
" writer.add_histogram('his/x', x, epoch)\n",
" writer.add_histogram('his/y', y, epoch)\n",
@ -190,10 +195,9 @@
" writer.add_scalar('data/y', y, epoch)\n",
" writer.add_scalar('data/loss', loss, epoch)\n",
" writer.add_scalars('data/data_group', {'x': x,\n",
" 'y': y,\n",
" 'loss': loss}, epoch)\n",
" 'y': y}, epoch)\n",
"\n",
" "
" "
]
},
{
@ -209,7 +213,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
@ -226,7 +230,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
@ -257,7 +261,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
@ -275,7 +279,7 @@
" print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n",
" epoch, batch_idx * len(data), len(train_loader.dataset),\n",
" 100. * batch_idx / len(train_loader), loss.item()))\n",
" #主要增加了一下内容\n",
" #相对于以前的训练方法 主要增加了以下内容\n",
" out = torch.cat((output.data, torch.ones(len(output), 1)), 1) # 因为是投影到3D的空间所以我们只需要3个维度\n",
" with SummaryWriter(log_dir='./logs', comment='mnist') as writer: \n",
" #使用add_embedding方法进行可视化展示\n",
@ -295,19 +299,16 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train Epoch: 0 [14848/60000 (25%)]\tLoss: 0.271775\n",
"warning: Embedding dir exists, did you set global_step for add_embedding()?\n",
"Train Epoch: 0 [30208/60000 (50%)]\tLoss: 0.175213\n",
"warning: Embedding dir exists, did you set global_step for add_embedding()?\n",
"Train Epoch: 0 [45568/60000 (75%)]\tLoss: 0.115128\n",
"warning: Embedding dir exists, did you set global_step for add_embedding()?\n"
"Train Epoch: 0 [14848/60000 (25%)]\tLoss: 0.352312\n",
"Train Epoch: 0 [30208/60000 (50%)]\tLoss: 0.202950\n",
"Train Epoch: 0 [45568/60000 (75%)]\tLoss: 0.156494\n"
]
}
],
@ -321,6 +322,8 @@
"source": [
"打开 `http://localhost:6006/#projector` 即可看到效果。\n",
"\n",
"目前测试投影这部分也是有问题的,根据官网文档的代码进行测试,也显示不出来,正在找原因\n",
"\n",
"### 绘制网络结构\n",
"在pytorch中我们可以使用print直接打印出网络的结构但是这种方法可视化效果不好这里使用tensorboard的GRAPHS来实现网络结构的可视化。\n",
"由于pytorch使用的是动态图计算所以我们这里要手动进行一次前向的传播.\n",
@ -330,7 +333,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 57,
"metadata": {},
"outputs": [
{
@ -340,44 +343,45 @@
"VGG(\n",
" (features): Sequential(\n",
" (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (1): ReLU(inplace)\n",
" (1): ReLU(inplace=True)\n",
" (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (3): ReLU(inplace)\n",
" (3): ReLU(inplace=True)\n",
" (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (6): ReLU(inplace)\n",
" (6): ReLU(inplace=True)\n",
" (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (8): ReLU(inplace)\n",
" (8): ReLU(inplace=True)\n",
" (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (11): ReLU(inplace)\n",
" (11): ReLU(inplace=True)\n",
" (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (13): ReLU(inplace)\n",
" (13): ReLU(inplace=True)\n",
" (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (15): ReLU(inplace)\n",
" (15): ReLU(inplace=True)\n",
" (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (18): ReLU(inplace)\n",
" (18): ReLU(inplace=True)\n",
" (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (20): ReLU(inplace)\n",
" (20): ReLU(inplace=True)\n",
" (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (22): ReLU(inplace)\n",
" (22): ReLU(inplace=True)\n",
" (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (25): ReLU(inplace)\n",
" (25): ReLU(inplace=True)\n",
" (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (27): ReLU(inplace)\n",
" (27): ReLU(inplace=True)\n",
" (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
" (29): ReLU(inplace)\n",
" (29): ReLU(inplace=True)\n",
" (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
" )\n",
" (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))\n",
" (classifier): Sequential(\n",
" (0): Linear(in_features=25088, out_features=4096, bias=True)\n",
" (1): ReLU(inplace)\n",
" (2): Dropout(p=0.5)\n",
" (1): ReLU(inplace=True)\n",
" (2): Dropout(p=0.5, inplace=False)\n",
" (3): Linear(in_features=4096, out_features=4096, bias=True)\n",
" (4): ReLU(inplace)\n",
" (5): Dropout(p=0.5)\n",
" (4): ReLU(inplace=True)\n",
" (5): Dropout(p=0.5, inplace=False)\n",
" (6): Linear(in_features=4096, out_features=1000, bias=True)\n",
" )\n",
")\n"
@ -398,7 +402,7 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
@ -420,7 +424,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 59,
"metadata": {},
"outputs": [
{
@ -429,7 +433,7 @@
"torch.Size([1, 3, 224, 224])"
]
},
"execution_count": 13,
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
@ -448,7 +452,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 60,
"metadata": {},
"outputs": [
{
@ -457,7 +461,7 @@
"287"
]
},
"execution_count": 14,
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
@ -478,19 +482,19 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"with SummaryWriter(log_dir='./logs', comment='vgg16') as writer:\n",
" writer.add_graph(vgg16, (vgg16_input,))"
"with SummaryWriter(log_dir='./logs', comment='vgg161') as writer:\n",
" writer.add_graph(vgg16, vgg16_input)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"打开tensorboard找到graphs就可以看到vgg模型具体的架构了"
"对于Pytorch的1.3版本来说,实测 SummaryWriter在处理结构图的时候是有问题的或者是需要加什么参数目前我还没找到所以建议大家继续使用tensorboardx。"
]
},
{
@ -503,9 +507,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "pytorch 1.0",
"display_name": "deep learning",
"language": "python",
"name": "pytorch1"
"name": "dl"
},
"language_info": {
"codemirror_mode": {
@ -517,7 +521,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
"version": "3.6.9"
}
},
"nbformat": 4,