{ "cells": [ { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'1.3.0'" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "import numpy as np\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "from PIL import Image\n", "from torchvision import transforms\n", "from torchvision import models,datasets\n", "torch.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 4.2.2 使用Tensorboard在 PyTorch 中进行可视化 \n", "\n", "## Tensorboard 简介\n", "Tensorboard是tensorflow内置的一个可视化工具,它通过将tensorflow程序输出的日志文件的信息可视化使得tensorflow程序的理解、调试和优化更加简单高效。\n", "Tensorboard的可视化依赖于tensorflow程序运行输出的日志文件,因而tensorboard和tensorflow程序在不同的进程中运行。\n", "TensorBoard给我们提供了极其方便而强大的可视化环境。它可以帮助我们理解整个神经网络的学习过程、数据的分布、性能瓶颈等等。\n", "\n", "tensorboard虽然是tensorflow内置的可视化工具,但是他们跑在不同的进程中,所以Github上已经有大神将tensorboard应用到Pytorch中 [链接在这里]( https://github.com/lanpa/tensorboardX)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tensorboard 安装\n", "首先需要安装tensorboard\n", "\n", "`pip install tensorboard`\n", "\n", "\n", "\n", "~~ 然后再安装tensorboardx ~~\n", "\n", "~~ `pip install tensorboardx` ~~\n", "pytorch 1.1以后的版本内置了SummaryWriter 函数,所以不需要再安装tensorboardx了\n", "\n", "安装完成后与 visdom一样执行独立的命令\n", "`tensorboard --logdir logs` 即可启动,默认的端口是 6006,在浏览器中打开 `http://localhost:6006/` 即可看到web页面。\n", "\n", "这里要说明的是 微软的Edge浏览器css会无法加载,使用chrome正常显示" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 页面\n", "与visdom不同,tensorboard针对不同的类型人为的区分多个标签,每一个标签页面代表不同的类型。\n", "下面我们根据不同的页面功能做个简单的介绍,更多详细内容请参考官网\n", "### SCALAR\n", "对标量数据进行汇总和记录,通常用来可视化训练过程中随着迭代次数准确率(val acc)、损失值(train/test loss)、学习率(learning rate)、每一层的权重和偏置的统计量(mean、std、max/min)等的变化曲线\n", "### IMAGES\n", "可视化当前轮训练使用的训练/测试图片或者 feature maps\n", "### GRAPHS\n", "可视化计算图的结构及计算图上的信息,通常用来展示网络的结构\n", "### HISTOGRAMS\n", "可视化张量的取值分布,记录变量的直方图(统计张量随着迭代轮数的变化情况)\n", "### PROJECTOR\n", "全称Embedding Projector 高维向量进行可视化" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 使用\n", "在使用前请先去确认执行`tensorboard --logdir logs` 并保证 `http://localhost:6006/` 页面能够正常打开\n", "\n", "### 图像展示\n", "首先介绍比较简单的功能,查看我们训练集和数据集中的图像,这里我们使用现成的图像作为展示。这里使用wikipedia上的一张猫的图片[这里](https://en.wikipedia.org/wiki/Cat#/media/File:Felis_silvestris_catus_lying_on_rice_straw.jpg)\n", "\n", "引入 tensorboardX 包" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [], "source": [ "# 这里的引用也要修改成torch的引用\n", "#from tensorboardX import SummaryWriter\n", "from torch.utils.tensorboard import SummaryWriter" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(1280, 853)" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cat_img = Image.open('./1280px-Felis_silvestris_catus_lying_on_rice_straw.jpg')\n", "cat_img.size" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这是一张1280x853的图,我们先把她变成224x224的图片,因为后面要使用的是vgg16" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "transform_224 = transforms.Compose([\n", " transforms.Resize(224), # 这里要说明下 Scale 已经过期了,使用Resize\n", " transforms.CenterCrop(224),\n", " transforms.ToTensor(),\n", " ])\n", "cat_img_224=transform_224(cat_img)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "将图片展示在tebsorboard中:" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "writer = SummaryWriter(log_dir='./logs', comment='cat image') # 这里的logs要与--logdir的参数一样\n", "writer.add_image(\"cat\",cat_img_224)\n", "writer.close()# 执行close立即刷新,否则将每120秒自动刷新" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "浏览器访问 `http://localhost:6006/#images` 即可看到猫的图片 \n", "### 更新损失函数\n", "更新损失函数和训练批次我们与visdom一样使用模拟展示,这里用到的是tensorboard的SCALAR页面" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "x = torch.FloatTensor([100])\n", "y = torch.FloatTensor([500])\n", "\n", "for epoch in range(30):\n", " x = x * 1.2\n", " y = y / 1.1\n", " loss = np.random.random()\n", " with SummaryWriter(log_dir='./logs', comment='train') as writer: #可以直接使用python的with语法,自动调用close方法\n", " writer.add_histogram('his/x', x, epoch)\n", " writer.add_histogram('his/y', y, epoch)\n", " writer.add_scalar('data/x', x, epoch)\n", " writer.add_scalar('data/y', y, epoch)\n", " writer.add_scalar('data/loss', loss, epoch)\n", " writer.add_scalars('data/data_group', {'x': x,\n", " 'y': y}, epoch)\n", "\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "浏览器访问 `http://localhost:6006/#scalars` 即可看到图形\n", "### 使用PROJECTOR对高维向量可视化\n", "PROJECTOR的的原理是通过PCA,T-SNE等方法将高维向量投影到三维坐标系(降维度)。Embedding Projector从模型运行过程中保存的checkpoint文件中读取数据,默认使用主成分分析法(PCA)将高维数据投影到3D空间中,也可以通过设置设置选择T-SNE投影方法,这里做一个简单的展示。\n", "\n", "我们还是用第三章的mnist代码" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE=512 \n", "EPOCHS=20 \n", "train_loader = torch.utils.data.DataLoader(\n", " datasets.MNIST('data', train=True, download=True, \n", " transform=transforms.Compose([\n", " transforms.ToTensor(),\n", " transforms.Normalize((0.1307,), (0.3081,))\n", " ])),\n", " batch_size=BATCH_SIZE, shuffle=True)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "class ConvNet(nn.Module):\n", " def __init__(self):\n", " super().__init__()\n", " # 1,28x28\n", " self.conv1=nn.Conv2d(1,10,5) # 10, 24x24\n", " self.conv2=nn.Conv2d(10,20,3) # 128, 10x10\n", " self.fc1 = nn.Linear(20*10*10,500)\n", " self.fc2 = nn.Linear(500,10)\n", " def forward(self,x):\n", " in_size = x.size(0)\n", " out = self.conv1(x) #24\n", " out = F.relu(out)\n", " out = F.max_pool2d(out, 2, 2) #12\n", " out = self.conv2(out) #10\n", " out = F.relu(out)\n", " out = out.view(in_size,-1)\n", " out = self.fc1(out)\n", " out = F.relu(out)\n", " out = self.fc2(out)\n", " out = F.log_softmax(out,dim=1)\n", " return out\n", "model = ConvNet()\n", "optimizer = torch.optim.Adam(model.parameters())" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "def train(model, train_loader, optimizer, epoch):\n", " n_iter=0\n", " model.train()\n", " for batch_idx, (data, target) in enumerate(train_loader):\n", " optimizer.zero_grad()\n", " output = model(data)\n", " loss = F.nll_loss(output, target)\n", " loss.backward()\n", " optimizer.step()\n", " if(batch_idx+1)%30 == 0: \n", " n_iter=n_iter+1\n", " print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", " epoch, batch_idx * len(data), len(train_loader.dataset),\n", " 100. * batch_idx / len(train_loader), loss.item()))\n", " #相对于以前的训练方法 主要增加了以下内容\n", " out = torch.cat((output.data, torch.ones(len(output), 1)), 1) # 因为是投影到3D的空间,所以我们只需要3个维度\n", " with SummaryWriter(log_dir='./logs', comment='mnist') as writer: \n", " #使用add_embedding方法进行可视化展示\n", " writer.add_embedding(\n", " out,\n", " metadata=target.data,\n", " label_img=data.data,\n", " global_step=n_iter)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这里节省时间,只训练一次" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train Epoch: 0 [14848/60000 (25%)]\tLoss: 0.352312\n", "Train Epoch: 0 [30208/60000 (50%)]\tLoss: 0.202950\n", "Train Epoch: 0 [45568/60000 (75%)]\tLoss: 0.156494\n" ] } ], "source": [ "train(model, train_loader, optimizer, 0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "打开 `http://localhost:6006/#projector` 即可看到效果。\n", "\n", "目前测试投影这部分也是有问题的,根据官网文档的代码进行测试,也显示不出来,正在找原因\n", "\n", "### 绘制网络结构\n", "在pytorch中我们可以使用print直接打印出网络的结构,但是这种方法可视化效果不好,这里使用tensorboard的GRAPHS来实现网络结构的可视化。\n", "由于pytorch使用的是动态图计算,所以我们这里要手动进行一次前向的传播.\n", "\n", "使用Pytorch已经构建好的模型进行展示" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "VGG(\n", " (features): Sequential(\n", " (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (1): ReLU(inplace=True)\n", " (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (3): ReLU(inplace=True)\n", " (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (6): ReLU(inplace=True)\n", " (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (8): ReLU(inplace=True)\n", " (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (11): ReLU(inplace=True)\n", " (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (13): ReLU(inplace=True)\n", " (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (15): ReLU(inplace=True)\n", " (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (18): ReLU(inplace=True)\n", " (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (20): ReLU(inplace=True)\n", " (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (22): ReLU(inplace=True)\n", " (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (25): ReLU(inplace=True)\n", " (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (27): ReLU(inplace=True)\n", " (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n", " (29): ReLU(inplace=True)\n", " (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", " )\n", " (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))\n", " (classifier): Sequential(\n", " (0): Linear(in_features=25088, out_features=4096, bias=True)\n", " (1): ReLU(inplace=True)\n", " (2): Dropout(p=0.5, inplace=False)\n", " (3): Linear(in_features=4096, out_features=4096, bias=True)\n", " (4): ReLU(inplace=True)\n", " (5): Dropout(p=0.5, inplace=False)\n", " (6): Linear(in_features=4096, out_features=1000, bias=True)\n", " )\n", ")\n" ] } ], "source": [ "vgg16 = models.vgg16(pretrained=True) # 这里下载预训练好的模型\n", "print(vgg16) # 打印一下这个模型" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "在前向传播前,先要把图片做一些调整" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "transform_2 = transforms.Compose([\n", " transforms.Resize(224), \n", " transforms.CenterCrop((224,224)),\n", " transforms.ToTensor(),\n", " transforms.Normalize(mean=[0.485, 0.456, 0.406],\n", " std=[0.229, 0.224, 0.225])\n", "])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "使用上一张猫的图片进行前向传播" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([1, 3, 224, 224])" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vgg16_input=transform_2(cat_img)[np.newaxis]# 因为pytorch的是分批次进行的,所以我们这里建立一个批次为1的数据集\n", "vgg16_input.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "开始前向传播,打印输出值" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "287" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "out = vgg16(vgg16_input)\n", "_, preds = torch.max(out.data, 1)\n", "label=preds.numpy()[0]\n", "label" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "将结构图在tensorboard进行展示" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [], "source": [ "with SummaryWriter(log_dir='./logs', comment='vgg161') as writer:\n", " writer.add_graph(vgg16, vgg16_input)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "对于Pytorch的1.3版本来说,实测 SummaryWriter在处理结构图的时候是有问题的(或者是需要加什么参数,目前我还没找到),所以建议大家继续使用tensorboardx。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "deep learning", "language": "python", "name": "dl" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }