{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "PyTorch是什么?\n", "================\n", "\n", "基于Python的科学计算包,服务于以下两种场景:\n", "\n", "- 作为NumPy的替代品,可以使用GPU的强大计算能力\n", "- 提供最大的灵活性和高速的深度学习研究平台\n", " \n", "\n", "开始\n", "---------------\n", "\n", "Tensors(张量)\n", "\n", "Tensors与Numpy中的 ndarrays类似,但是在PyTorch中\n", "Tensors 可以使用GPU进行计算.\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", "import torch" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "创建一个 5x3 矩阵, 但是未初始化:\n", "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 0.0000]])\n" ] } ], "source": [ "x = torch.empty(5, 3)\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "创建一个随机初始化的矩阵:\n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0.6972, 0.0231, 0.3087],\n", " [0.2083, 0.6141, 0.6896],\n", " [0.7228, 0.9715, 0.5304],\n", " [0.7727, 0.1621, 0.9777],\n", " [0.6526, 0.6170, 0.2605]])\n" ] } ], "source": [ "x = torch.rand(5, 3)\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "创建一个0填充的矩阵,数据类型为long:\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0, 0, 0],\n", " [0, 0, 0],\n", " [0, 0, 0],\n", " [0, 0, 0],\n", " [0, 0, 0]])\n" ] } ], "source": [ "x = torch.zeros(5, 3, dtype=torch.long)\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "创建tensor并使用现有数据初始化:\n", "\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([5.5000, 3.0000])\n" ] } ], "source": [ "x = torch.tensor([5.5, 3])\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "根据现有的张量创建张量。 这些方法将重用输入张量的属性,例如, dtype,除非设置新的值进行覆盖" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[1., 1., 1.],\n", " [1., 1., 1.],\n", " [1., 1., 1.],\n", " [1., 1., 1.],\n", " [1., 1., 1.]], dtype=torch.float64)\n", "tensor([[ 0.5691, -2.0126, -0.4064],\n", " [-0.0863, 0.4692, -1.1209],\n", " [-1.1177, -0.5764, -0.5363],\n", " [-0.4390, 0.6688, 0.0889],\n", " [ 1.3334, -1.1600, 1.8457]])\n" ] } ], "source": [ "x = x.new_ones(5, 3, dtype=torch.double) # new_* 方法来创建对象\n", "print(x)\n", "\n", "x = torch.randn_like(x, dtype=torch.float) # 覆盖 dtype!\n", "print(x) # 对象的size 是相同的,只是值和类型发生了变化" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "获取 size\n", "\n", "***译者注:使用size方法与Numpy的shape属性返回的相同,张量也支持shape属性,后面会详细介绍***\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([5, 3])\n" ] } ], "source": [ "print(x.size())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
``torch.Size`` 返回值是 tuple类型, 所以它支持tuple类型的所有操作.
任何 以``_`` 结尾的操作都会用结果替换原变量.\n", " 例如: ``x.copy_(y)``, ``x.t_()``, 都会改变 ``x``.