{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# PyTorch 基础 : 张量\n", "在第一章中我们已经通过官方的入门教程对PyTorch有了一定的了解,这一章会详细介绍PyTorch 里面的基础知识。\n", "全部掌握了这些基础知识,在后面的应用中才能更加快速进阶,如果你已经对PyTorch有一定的了解,可以跳过此章" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'1.0.0'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 首先要引入相关的包\n", "import torch\n", "import numpy as np\n", "#打印一下版本\n", "torch.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 张量(Tensor)\n", "张量的英文是Tensor,它是PyTorch里面基础的运算单位,与Numpy的ndarray相同都表示的是一个多维的矩阵。\n", "与ndarray的最大区别就是,PyTorch的Tensor可以在 GPU 上运行,而 numpy 的 ndarray 只能在 CPU 上运行,在GPU上运行大大加快了运算速度。\n", "\n", "下面我们生成一个简单的张量" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.6904, 0.7419, 0.8010],\n", " [0.1722, 0.2442, 0.8181]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = torch.rand(2, 3)\n", "x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "以上生成了一个,2行3列的的矩阵,我们看一下他的大小:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([2, 3])\n", "torch.Size([2, 3])\n" ] } ], "source": [ "# 可以使用与numpy相同的shape属性查看\n", "print(x.shape)\n", "# 也可以使用size()函数,返回的结果都是相同的\n", "print(x.size())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "张量(Tensor)是一个定义在一些向量空间和一些对偶空间的笛卡儿积上的多重线性映射,其坐标是|n|维空间内,有|n|个分量的一种量, 其中每个分量都是坐标的函数, 而在坐标变换时,这些分量也依照某些规则作线性变换。r称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 (来自百度百科)\n", "\n", "下面我们来生成一些多维的张量:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([2, 3, 4, 5])\n" ] }, { "data": { "text/plain": [ "tensor([[[[0.9071, 0.0616, 0.0006, 0.6031, 0.0714],\n", " [0.6592, 0.9700, 0.0253, 0.0726, 0.5360],\n", " [0.5416, 0.1138, 0.9592, 0.6779, 0.6501],\n", " [0.0546, 0.8287, 0.7748, 0.4352, 0.9232]],\n", "\n", " [[0.0730, 0.4228, 0.7407, 0.4099, 0.1482],\n", " [0.5408, 0.9156, 0.6554, 0.5787, 0.9775],\n", " [0.4262, 0.3644, 0.1993, 0.4143, 0.5757],\n", " [0.9307, 0.8839, 0.8462, 0.0933, 0.6688]],\n", "\n", " [[0.4447, 0.0929, 0.9882, 0.5392, 0.1159],\n", " [0.4790, 0.5115, 0.4005, 0.9486, 0.0054],\n", " [0.8955, 0.8097, 0.1227, 0.2250, 0.5830],\n", " [0.8483, 0.2070, 0.1067, 0.4727, 0.5095]]],\n", "\n", "\n", " [[[0.9438, 0.2601, 0.2885, 0.5457, 0.7528],\n", " [0.2971, 0.2171, 0.3910, 0.1924, 0.2570],\n", " [0.7491, 0.9749, 0.2703, 0.2198, 0.9472],\n", " [0.1216, 0.6647, 0.8809, 0.0125, 0.5513]],\n", "\n", " [[0.0870, 0.6622, 0.7252, 0.4783, 0.0160],\n", " [0.7832, 0.6050, 0.7469, 0.7947, 0.8052],\n", " [0.1755, 0.4489, 0.0602, 0.8073, 0.3028],\n", " [0.9937, 0.6780, 0.9425, 0.0059, 0.0451]],\n", "\n", " [[0.3851, 0.8742, 0.5932, 0.4899, 0.8354],\n", " [0.8577, 0.3705, 0.0229, 0.7097, 0.7557],\n", " [0.1505, 0.3527, 0.0843, 0.0088, 0.8741],\n", " [0.6041, 0.8797, 0.6189, 0.9495, 0.1479]]]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y=torch.rand(2,3,4,5)\n", "print(y.size())\n", "y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "在同构的意义下,第零阶张量 (r = 0) 为标量 (Scalar),第一阶张量 (r = 1) 为向量 (Vector), 第二阶张量 (r = 2) 则成为矩阵 (Matrix),第三阶以上的统称为多维张量。\n", "\n", "其中要特别注意的就是标量,我们先生成一个标量:\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(3.1433)\n" ] }, { "data": { "text/plain": [ "torch.Size([])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#我们直接使用现有数字生成\n", "scalar =torch.tensor(3.1433223)\n", "print(scalar)\n", "#打印标量的大小\n", "scalar.size()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "对于标量,我们可以直接使用 .item() 从中取出其对应的python对象的数值" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.143322229385376" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "scalar.item()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "特别的:如果张量中只有一个元素的tensor也可以调用`tensor.item`方法" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([3.1433])\n" ] }, { "data": { "text/plain": [ "torch.Size([1])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tensor = torch.tensor([3.1433223]) \n", "print(tensor)\n", "tensor.size()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.143322229385376" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tensor.item()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 基本类型\n", "Tensor的基本数据类型有五种:\n", "- 32位浮点型:torch.FloatTensor。 (默认)\n", "- 64位整型:torch.LongTensor。\n", "- 32位整型:torch.IntTensor。\n", "- 16位整型:torch.ShortTensor。\n", "- 64位浮点型:torch.DoubleTensor。\n", "\n", "除以上数字类型外,还有\n", "byte和chart型" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([3])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "long=tensor.long()\n", "long" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([3.1426], dtype=torch.float16)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "half=tensor.half()\n", "half" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([3], dtype=torch.int32)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "int_t=tensor.int()\n", "int_t" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([3.1433])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "flo = tensor.float()\n", "flo" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([3], dtype=torch.int16)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "short = tensor.short()\n", "short" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([3], dtype=torch.int8)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ch = tensor.char()\n", "ch" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([3], dtype=torch.uint8)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bt = tensor.byte()\n", "bt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Numpy转换\n", "使用numpy方法将Tensor转为ndarray" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 0.46819344 1.3774964 ]\n", " [ 0.9491934 1.4543315 ]\n", " [-0.42792308 0.99790514]]\n" ] } ], "source": [ "a = torch.randn((3, 2))\n", "# tensor转化为numpy\n", "numpy_a = a.numpy()\n", "print(numpy_a)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "numpy转化为Tensor\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "tensor([[ 0.4682, 1.3775],\n", " [ 0.9492, 1.4543],\n", " [-0.4279, 0.9979]])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch_a = torch.from_numpy(numpy_a)\n", "torch_a" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***Tensor和numpy对象共享内存,所以他们之间的转换很快,而且几乎不会消耗什么资源。但这也意味着,如果其中一个变了,另外一个也会随之改变。***" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 设备间转换\n", "一般情况下可以使用.cuda方法将tensor移动到gpu,这步操作需要cuda设备支持" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'torch.FloatTensor'" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cpu_a=torch.rand(4, 3)\n", "cpu_a.type()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "'torch.cuda.FloatTensor'" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gpu_a=cpu_a.cuda()\n", "gpu_a.type()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "使用.cpu方法将tensor移动到cpu" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "'torch.FloatTensor'" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cpu_b=gpu_a.cpu()\n", "cpu_b.type()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "如果我们有多GPU的情况,可以使用to方法来确定使用那个设备,这里只做个简单的实例:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cuda\n" ] }, { "data": { "text/plain": [ "'torch.cuda.FloatTensor'" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#使用torch.cuda.is_available()来确定是否有cuda设备\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "print(device)\n", "#将tensor传送到设备\n", "gpu_b=cpu_b.to(device)\n", "gpu_b.type()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 初始化\n", "Pytorch中有许多默认的初始化方法可以使用" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "tensor([[0.3804, 0.0297, 0.5241],\n", " [0.4111, 0.8887, 0.4642],\n", " [0.7302, 0.5913, 0.7182],\n", " [0.3048, 0.8055, 0.2176],\n", " [0.6195, 0.1620, 0.7726]])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 使用[0,1]均匀分布随机初始化二维数组\n", "rnd = torch.rand(5, 3)\n", "rnd" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[1., 1.],\n", " [1., 1.]])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "##初始化,使用1填充\n", "one = torch.ones(2, 2)\n", "one" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0., 0.],\n", " [0., 0.]])" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "##初始化,使用0填充\n", "zero=torch.zeros(2,2)\n", "zero" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[1., 0.],\n", " [0., 1.]])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#初始化一个单位矩阵,即对角线为1 其他为0\n", "eye=torch.eye(2,2)\n", "eye" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 常用方法\n", "PyTorch中对张量的操作api 和 NumPy 非常相似,如果熟悉 NumPy 中的操作,那么他们二者基本是一致的:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 0.6922, -0.4824, 0.8594],\n", " [ 0.4509, -0.8155, -0.0368],\n", " [ 1.3533, 0.5545, -0.0509]])\n" ] } ], "source": [ "x = torch.randn(3, 3)\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([0.8594, 0.4509, 1.3533]) tensor([2, 0, 0])\n" ] } ], "source": [ "# 沿着行取最大值\n", "max_value, max_idx = torch.max(x, dim=1)\n", "print(max_value, max_idx)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([ 1.0692, -0.4014, 1.8568])\n" ] } ], "source": [ "# 每行 x 求和\n", "sum_x = torch.sum(x, dim=1)\n", "print(sum_x)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[-0.3821, -2.6932, -1.3884],\n", " [ 0.7468, -0.7697, -0.0883],\n", " [ 0.7688, -1.3485, 0.7517]])\n" ] } ], "source": [ "y=torch.randn(3, 3)\n", "z = x + y\n", "print(z)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "正如官方60分钟教程中所说,以_为结尾的,均会改变调用值" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[-0.3821, -2.6932, -1.3884],\n", " [ 0.7468, -0.7697, -0.0883],\n", " [ 0.7688, -1.3485, 0.7517]])\n" ] } ], "source": [ "# add 完成后x的值改变了\n", "x.add_(y)\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "张量的基本操作都介绍的的差不多了,下一章介绍PyTorch的自动求导机制" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 2 }