404 lines
14 KiB
Plaintext
404 lines
14 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"%matplotlib inline"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"\n",
|
||
"数据并行(选读)\n",
|
||
"==========================\n",
|
||
"**Authors**: [Sung Kim](https://github.com/hunkim) and [Jenny Kang](https://github.com/jennykang)\n",
|
||
"\n",
|
||
"在这个教程里,我们将学习如何使用 ``DataParallel`` 来使用多GPU。 \n",
|
||
"\n",
|
||
"PyTorch非常容易就可以使用多GPU,用如下方式把一个模型放到GPU上:\n",
|
||
"\n",
|
||
"```python\n",
|
||
"\n",
|
||
" device = torch.device(\"cuda:0\")\n",
|
||
" model.to(device)\n",
|
||
"```\n",
|
||
" GPU:\n",
|
||
"然后复制所有的张量到GPU上:\n",
|
||
"```python\n",
|
||
"\n",
|
||
" mytensor = my_tensor.to(device)\n",
|
||
"```\n",
|
||
"请注意,只调用``my_tensor.to(device)``并没有复制张量到GPU上,而是返回了一个copy。所以你需要把它赋值给一个新的张量并在GPU上使用这个张量。\n",
|
||
"\n",
|
||
"在多GPU上执行前向和反向传播是自然而然的事。\n",
|
||
"但是PyTorch默认将只使用一个GPU。\n",
|
||
"\n",
|
||
"使用``DataParallel``可以轻易的让模型并行运行在多个GPU上。\n",
|
||
"\n",
|
||
"\n",
|
||
"```python\n",
|
||
"\n",
|
||
" model = nn.DataParallel(model)\n",
|
||
"```\n",
|
||
"这才是这篇教程的核心,接下来我们将更详细的介绍它。\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"导入和参数\n",
|
||
"----------------------\n",
|
||
"\n",
|
||
"导入PyTorch模块和定义参数。\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import torch\n",
|
||
"import torch.nn as nn\n",
|
||
"from torch.utils.data import Dataset, DataLoader\n",
|
||
"\n",
|
||
"# Parameters and DataLoaders\n",
|
||
"input_size = 5\n",
|
||
"output_size = 2\n",
|
||
"\n",
|
||
"batch_size = 30\n",
|
||
"data_size = 100"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Device\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"虚拟数据集\n",
|
||
"-------------\n",
|
||
"\n",
|
||
"制作一个虚拟(随机)数据集,\n",
|
||
"你只需实现 `__getitem__`\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class RandomDataset(Dataset):\n",
|
||
"\n",
|
||
" def __init__(self, size, length):\n",
|
||
" self.len = length\n",
|
||
" self.data = torch.randn(length, size)\n",
|
||
"\n",
|
||
" def __getitem__(self, index):\n",
|
||
" return self.data[index]\n",
|
||
"\n",
|
||
" def __len__(self):\n",
|
||
" return self.len\n",
|
||
"\n",
|
||
"rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),\n",
|
||
" batch_size=batch_size, shuffle=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"简单模型\n",
|
||
"------------\n",
|
||
"作为演示,我们的模型只接受一个输入,执行一个线性操作,然后得到结果。\n",
|
||
"说明:``DataParallel``能在任何模型(CNN,RNN,Capsule Net等)上使用。\n",
|
||
"\n",
|
||
"\n",
|
||
"我们在模型内部放置了一条打印语句来打印输入和输出向量的大小。\n",
|
||
"\n",
|
||
"请注意批次的秩为0时打印的内容。\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class Model(nn.Module):\n",
|
||
" # Our model\n",
|
||
"\n",
|
||
" def __init__(self, input_size, output_size):\n",
|
||
" super(Model, self).__init__()\n",
|
||
" self.fc = nn.Linear(input_size, output_size)\n",
|
||
"\n",
|
||
" def forward(self, input):\n",
|
||
" output = self.fc(input)\n",
|
||
" print(\"\\tIn Model: input size\", input.size(),\n",
|
||
" \"output size\", output.size())\n",
|
||
"\n",
|
||
" return output"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"创建一个模型和数据并行\n",
|
||
"-----------------------------\n",
|
||
"\n",
|
||
"这是本教程的核心部分。\n",
|
||
"\n",
|
||
"首先,我们需要创建一个模型实例和检测我们是否有多个GPU。\n",
|
||
"如果有多个GPU,使用``nn.DataParallel``来包装我们的模型。\n",
|
||
"然后通过``model.to(device)``把模型放到GPU上。\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Model(\n",
|
||
" (fc): Linear(in_features=5, out_features=2, bias=True)\n",
|
||
")"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"model = Model(input_size, output_size)\n",
|
||
"if torch.cuda.device_count() > 1:\n",
|
||
" print(\"Let's use\", torch.cuda.device_count(), \"GPUs!\")\n",
|
||
" # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs\n",
|
||
" model = nn.DataParallel(model)\n",
|
||
"\n",
|
||
"model.to(device)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"运行模型\n",
|
||
"-------------\n",
|
||
"\n",
|
||
"现在可以看到输入和输出张量的大小。\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\tIn Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])\n",
|
||
"Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
"\tIn Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])\n",
|
||
"Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
"\tIn Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])\n",
|
||
"Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
"\tIn Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
"Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for data in rand_loader:\n",
|
||
" input = data.to(device)\n",
|
||
" output = model(input)\n",
|
||
" print(\"Outside: input size\", input.size(),\n",
|
||
" \"output_size\", output.size())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"结果\n",
|
||
"-------\n",
|
||
"\n",
|
||
"当没有或者只有一个GPU时,对30个输入和输出进行批处理,得到了期望的一样得到30个输入和输出,但是如果你有多个GPU,你得到如下的结果。\n",
|
||
"\n",
|
||
"\n",
|
||
"2 GPUs\n",
|
||
"~\n",
|
||
"\n",
|
||
"If you have 2, you will see:\n",
|
||
"\n",
|
||
".. code:: bash\n",
|
||
"\n",
|
||
" # on 2 GPUs\n",
|
||
" Let's use 2 GPUs!\n",
|
||
" In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])\n",
|
||
" In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])\n",
|
||
" In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])\n",
|
||
" In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])\n",
|
||
" In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])\n",
|
||
" Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])\n",
|
||
"\n",
|
||
"3 GPUs\n",
|
||
"~\n",
|
||
"\n",
|
||
"If you have 3 GPUs, you will see:\n",
|
||
"\n",
|
||
".. code:: bash\n",
|
||
"\n",
|
||
" Let's use 3 GPUs!\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])\n",
|
||
"\n",
|
||
"8 GPUs\n",
|
||
"~~\n",
|
||
"\n",
|
||
"If you have 8, you will see:\n",
|
||
"\n",
|
||
".. code:: bash\n",
|
||
"\n",
|
||
" Let's use 8 GPUs!\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])\n",
|
||
" Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"总结\n",
|
||
"-------\n",
|
||
"\n",
|
||
"DataParallel会自动的划分数据,并将作业发送到多个GPU上的多个模型。\n",
|
||
"并在每个模型完成作业后,收集合并结果并返回。\n",
|
||
"\n",
|
||
"更多信息请看这里:\n",
|
||
"https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html.\n",
|
||
"\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Pytorch for Deeplearning",
|
||
"language": "python",
|
||
"name": "pytorch"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 1
|
||
}
|