433 lines
16 KiB
Plaintext
433 lines
16 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'1.0.0'"
|
||
]
|
||
},
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import torch\n",
|
||
"import torch.nn as nn\n",
|
||
"import torch.nn.functional as F\n",
|
||
"import torch.optim as optim\n",
|
||
"from torchvision import datasets, transforms\n",
|
||
"torch.__version__"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# 3.2 MNIST数据集手写数字识别\n",
|
||
"\n",
|
||
"## 3.2.1 数据集介绍\n",
|
||
"MNIST 包括6万张28x28的训练样本,1万张测试样本,很多教程都会对它”下手”几乎成为一个 “典范”,可以说它就是计算机视觉里面的Hello World。所以我们这里也会使用MNIST来进行实战。\n",
|
||
"\n",
|
||
"前面在介绍卷积神经网络的时候说到过LeNet-5,LeNet-5之所以强大就是因为在当时的环境下将MNIST数据的识别率提高到了99%,这里我们也自己从头搭建一个卷积神经网络,也达到99%的准确率"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 3.2.2 手写数字识别\n",
|
||
"首先,我们定义一些超参数"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"BATCH_SIZE=512 #大概需要2G的显存\n",
|
||
"EPOCHS=20 # 总共训练批次\n",
|
||
"DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") # 让torch判断是否使用GPU,建议使用GPU环境,因为会快很多"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"因为Pytorch里面包含了MNIST的数据集,所以我们这里直接使用即可。\n",
|
||
"如果第一次执行会生成data文件夹,并且需要一些时间下载,如果以前下载过就不会再次下载了\n",
|
||
"\n",
|
||
"由于官方已经实现了dataset,所以这里可以直接使用DataLoader来对数据进行读取"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n",
|
||
"Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n",
|
||
"Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n",
|
||
"Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n",
|
||
"Processing...\n",
|
||
"Done!\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"train_loader = torch.utils.data.DataLoader(\n",
|
||
" datasets.MNIST('data', train=True, download=True, \n",
|
||
" transform=transforms.Compose([\n",
|
||
" transforms.ToTensor(),\n",
|
||
" transforms.Normalize((0.1307,), (0.3081,))\n",
|
||
" ])),\n",
|
||
" batch_size=BATCH_SIZE, shuffle=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"测试集"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"test_loader = torch.utils.data.DataLoader(\n",
|
||
" datasets.MNIST('data', train=False, transform=transforms.Compose([\n",
|
||
" transforms.ToTensor(),\n",
|
||
" transforms.Normalize((0.1307,), (0.3081,))\n",
|
||
" ])),\n",
|
||
" batch_size=BATCH_SIZE, shuffle=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"下面我们定义一个网络,网络包含两个卷积层,conv1和conv2,然后紧接着两个线性层作为输出,最后输出10个维度,这10个维度我们作为0-9的标识来确定识别出的是那个数字\n",
|
||
"\n",
|
||
"在这里建议大家将每一层的输入和输出维度都作为注释标注出来,这样后面阅读代码的会方便很多"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class ConvNet(nn.Module):\n",
|
||
" def __init__(self):\n",
|
||
" super().__init__()\n",
|
||
" # batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28)\n",
|
||
" # 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数,第三个参数指卷积核的大小\n",
|
||
" self.conv1 = nn.Conv2d(1, 10, 5) # 输入通道数1,输出通道数10,核的大小5\n",
|
||
" self.conv2 = nn.Conv2d(10, 20, 3) # 输入通道数10,输出通道数20,核的大小3\n",
|
||
" # 下面的全连接层Linear的第一个参数指输入通道数,第二个参数指输出通道数\n",
|
||
" self.fc1 = nn.Linear(20*10*10, 500) # 输入通道数是2000,输出通道数是500\n",
|
||
" self.fc2 = nn.Linear(500, 10) # 输入通道数是500,输出通道数是10,即10分类\n",
|
||
" def forward(self,x):\n",
|
||
" in_size = x.size(0) # 在本例中in_size=512,也就是BATCH_SIZE的值。输入的x可以看成是512*1*28*28的张量。\n",
|
||
" out = self.conv1(x) # batch*1*28*28 -> batch*10*24*24(28x28的图像经过一次核为5x5的卷积,输出变为24x24)\n",
|
||
" out = F.relu(out) # batch*10*24*24(激活函数ReLU不改变形状))\n",
|
||
" out = F.max_pool2d(out, 2, 2) # batch*10*24*24 -> batch*10*12*12(2*2的池化层会减半)\n",
|
||
" out = self.conv2(out) # batch*10*12*12 -> batch*20*10*10(再卷积一次,核的大小是3)\n",
|
||
" out = F.relu(out) # batch*20*10*10\n",
|
||
" out = out.view(in_size, -1) # batch*20*10*10 -> batch*2000(out的第二维是-1,说明是自动推算,本例中第二维是20*10*10)\n",
|
||
" out = self.fc1(out) # batch*2000 -> batch*500\n",
|
||
" out = F.relu(out) # batch*500\n",
|
||
" out = self.fc2(out) # batch*500 -> batch*10\n",
|
||
" out = F.log_softmax(out, dim=1) # 计算log(softmax(x))\n",
|
||
" return out"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"我们实例化一个网络,实例化后使用.to方法将网络移动到GPU\n",
|
||
"\n",
|
||
"优化器我们也直接选择简单暴力的Adam"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"model = ConvNet().to(DEVICE)\n",
|
||
"optimizer = optim.Adam(model.parameters())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"下面定义一下训练的函数,我们将训练的所有操作都封装到这个函数中"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def train(model, device, train_loader, optimizer, epoch):\n",
|
||
" model.train()\n",
|
||
" for batch_idx, (data, target) in enumerate(train_loader):\n",
|
||
" data, target = data.to(device), target.to(device)\n",
|
||
" optimizer.zero_grad()\n",
|
||
" output = model(data)\n",
|
||
" loss = F.nll_loss(output, target)\n",
|
||
" loss.backward()\n",
|
||
" optimizer.step()\n",
|
||
" if(batch_idx+1)%30 == 0: \n",
|
||
" print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n",
|
||
" epoch, batch_idx * len(data), len(train_loader.dataset),\n",
|
||
" 100. * batch_idx / len(train_loader), loss.item()))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"测试的操作也一样封装成一个函数"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def test(model, device, test_loader):\n",
|
||
" model.eval()\n",
|
||
" test_loss = 0\n",
|
||
" correct = 0\n",
|
||
" with torch.no_grad():\n",
|
||
" for data, target in test_loader:\n",
|
||
" data, target = data.to(device), target.to(device)\n",
|
||
" output = model(data)\n",
|
||
" test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加\n",
|
||
" pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标\n",
|
||
" correct += pred.eq(target.view_as(pred)).sum().item()\n",
|
||
"\n",
|
||
" test_loss /= len(test_loader.dataset)\n",
|
||
" print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n",
|
||
" test_loss, correct, len(test_loader.dataset),\n",
|
||
" 100. * correct / len(test_loader.dataset)))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"下面开始训练,这里就体现出封装起来的好处了,只要写两行就可以了"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Train Epoch: 1 [14848/60000 (25%)]\tLoss: 0.272529\n",
|
||
"Train Epoch: 1 [30208/60000 (50%)]\tLoss: 0.235455\n",
|
||
"Train Epoch: 1 [45568/60000 (75%)]\tLoss: 0.101858\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.1018, Accuracy: 9695/10000 (97%)\n",
|
||
"\n",
|
||
"Train Epoch: 2 [14848/60000 (25%)]\tLoss: 0.057989\n",
|
||
"Train Epoch: 2 [30208/60000 (50%)]\tLoss: 0.083935\n",
|
||
"Train Epoch: 2 [45568/60000 (75%)]\tLoss: 0.051921\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0523, Accuracy: 9825/10000 (98%)\n",
|
||
"\n",
|
||
"Train Epoch: 3 [14848/60000 (25%)]\tLoss: 0.045383\n",
|
||
"Train Epoch: 3 [30208/60000 (50%)]\tLoss: 0.049402\n",
|
||
"Train Epoch: 3 [45568/60000 (75%)]\tLoss: 0.061366\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0408, Accuracy: 9866/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 4 [14848/60000 (25%)]\tLoss: 0.035253\n",
|
||
"Train Epoch: 4 [30208/60000 (50%)]\tLoss: 0.038444\n",
|
||
"Train Epoch: 4 [45568/60000 (75%)]\tLoss: 0.036877\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0433, Accuracy: 9859/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 5 [14848/60000 (25%)]\tLoss: 0.038996\n",
|
||
"Train Epoch: 5 [30208/60000 (50%)]\tLoss: 0.020670\n",
|
||
"Train Epoch: 5 [45568/60000 (75%)]\tLoss: 0.034658\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0339, Accuracy: 9885/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 6 [14848/60000 (25%)]\tLoss: 0.067320\n",
|
||
"Train Epoch: 6 [30208/60000 (50%)]\tLoss: 0.016328\n",
|
||
"Train Epoch: 6 [45568/60000 (75%)]\tLoss: 0.017037\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0348, Accuracy: 9881/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 7 [14848/60000 (25%)]\tLoss: 0.022150\n",
|
||
"Train Epoch: 7 [30208/60000 (50%)]\tLoss: 0.009608\n",
|
||
"Train Epoch: 7 [45568/60000 (75%)]\tLoss: 0.012742\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0346, Accuracy: 9895/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 8 [14848/60000 (25%)]\tLoss: 0.010173\n",
|
||
"Train Epoch: 8 [30208/60000 (50%)]\tLoss: 0.019482\n",
|
||
"Train Epoch: 8 [45568/60000 (75%)]\tLoss: 0.012159\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0323, Accuracy: 9886/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 9 [14848/60000 (25%)]\tLoss: 0.007792\n",
|
||
"Train Epoch: 9 [30208/60000 (50%)]\tLoss: 0.006970\n",
|
||
"Train Epoch: 9 [45568/60000 (75%)]\tLoss: 0.004989\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0294, Accuracy: 9909/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 10 [14848/60000 (25%)]\tLoss: 0.003764\n",
|
||
"Train Epoch: 10 [30208/60000 (50%)]\tLoss: 0.005944\n",
|
||
"Train Epoch: 10 [45568/60000 (75%)]\tLoss: 0.001866\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0361, Accuracy: 9902/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 11 [14848/60000 (25%)]\tLoss: 0.002737\n",
|
||
"Train Epoch: 11 [30208/60000 (50%)]\tLoss: 0.014134\n",
|
||
"Train Epoch: 11 [45568/60000 (75%)]\tLoss: 0.001365\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0309, Accuracy: 9905/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 12 [14848/60000 (25%)]\tLoss: 0.003344\n",
|
||
"Train Epoch: 12 [30208/60000 (50%)]\tLoss: 0.003090\n",
|
||
"Train Epoch: 12 [45568/60000 (75%)]\tLoss: 0.004847\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0318, Accuracy: 9902/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 13 [14848/60000 (25%)]\tLoss: 0.001278\n",
|
||
"Train Epoch: 13 [30208/60000 (50%)]\tLoss: 0.003016\n",
|
||
"Train Epoch: 13 [45568/60000 (75%)]\tLoss: 0.001328\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0358, Accuracy: 9906/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 14 [14848/60000 (25%)]\tLoss: 0.002219\n",
|
||
"Train Epoch: 14 [30208/60000 (50%)]\tLoss: 0.003487\n",
|
||
"Train Epoch: 14 [45568/60000 (75%)]\tLoss: 0.014429\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0376, Accuracy: 9896/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 15 [14848/60000 (25%)]\tLoss: 0.003042\n",
|
||
"Train Epoch: 15 [30208/60000 (50%)]\tLoss: 0.002974\n",
|
||
"Train Epoch: 15 [45568/60000 (75%)]\tLoss: 0.000871\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0346, Accuracy: 9909/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 16 [14848/60000 (25%)]\tLoss: 0.000618\n",
|
||
"Train Epoch: 16 [30208/60000 (50%)]\tLoss: 0.003164\n",
|
||
"Train Epoch: 16 [45568/60000 (75%)]\tLoss: 0.007245\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0357, Accuracy: 9905/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 17 [14848/60000 (25%)]\tLoss: 0.001874\n",
|
||
"Train Epoch: 17 [30208/60000 (50%)]\tLoss: 0.013951\n",
|
||
"Train Epoch: 17 [45568/60000 (75%)]\tLoss: 0.000729\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0322, Accuracy: 9922/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 18 [14848/60000 (25%)]\tLoss: 0.002581\n",
|
||
"Train Epoch: 18 [30208/60000 (50%)]\tLoss: 0.001396\n",
|
||
"Train Epoch: 18 [45568/60000 (75%)]\tLoss: 0.015521\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0389, Accuracy: 9914/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 19 [14848/60000 (25%)]\tLoss: 0.000283\n",
|
||
"Train Epoch: 19 [30208/60000 (50%)]\tLoss: 0.001385\n",
|
||
"Train Epoch: 19 [45568/60000 (75%)]\tLoss: 0.011184\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0383, Accuracy: 9901/10000 (99%)\n",
|
||
"\n",
|
||
"Train Epoch: 20 [14848/60000 (25%)]\tLoss: 0.000472\n",
|
||
"Train Epoch: 20 [30208/60000 (50%)]\tLoss: 0.003306\n",
|
||
"Train Epoch: 20 [45568/60000 (75%)]\tLoss: 0.018017\n",
|
||
"\n",
|
||
"Test set: Average loss: 0.0393, Accuracy: 9899/10000 (99%)\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for epoch in range(1, EPOCHS + 1):\n",
|
||
" train(model, DEVICE, train_loader, optimizer, epoch)\n",
|
||
" test(model, DEVICE, test_loader)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"我们看一下结果,准确率99%,没问题"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"如果你的模型连MNIST都搞不定,那么你的模型没有任何的价值\n",
|
||
"\n",
|
||
"即使你的模型搞定了MNIST,你的模型也可能没有任何的价值\n",
|
||
"\n",
|
||
"MNIST是一个很简单的数据集,由于它的局限性只能作为研究用途,对实际应用带来的价值非常有限。但是通过这个例子,我们可以完全了解一个实际项目的工作流程\n",
|
||
"\n",
|
||
"我们找到数据集,对数据做预处理,定义我们的模型,调整超参数,测试训练,再通过训练结果对超参数进行调整或者对模型进行调整。\n",
|
||
"\n",
|
||
"并且通过这个实战我们已经有了一个很好的模板,以后的项目都可以以这个模板为样例"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "pytorch 1.0",
|
||
"language": "python",
|
||
"name": "pytorch1"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|