pytorch-handbook/chapter4/4.5-multiply-gpu-parallel-training.ipynb
久永 b13697fb3d
添加在非 jupyter notebook 环境下代码需要引入的包的代码。
虽然对于老鸟这不是个事,但是对于看文档学习的初学者来说,确实是件困惑的事。
2020-02-28 10:56:33 +08:00

651 lines
37 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1.0.0'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"import torchvision\n",
"torch.__version__"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4.5 多GPU并行训练\n",
"\n",
"在我们进行神经网络训练的时候因为计算量巨大所以单个GPU运算会使得计算时间很长使得我们不能够及时的得到结果例如我们如果使用但GPU使用ImageNet的数据训练一个分类器可能会花费一周甚至一个月的时间。所以在Pytorch中引入了多GPU计算的机制这样使得训练速度可以指数级的增长。\n",
"\n",
"stanford大学的[DAWNBench](https://dawn.cs.stanford.edu/benchmark/) 就记录了目前为止的一些使用多GPU计算的记录和实现代码有兴趣的可以看看。\n",
"\n",
"这章里面我们要介绍的三个方式来使用多GPU加速"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4.5.1 torch.nn.DataParalle\n",
"一般情况下我们都会使用一台主机带多个显卡这样是一个最节省预算的方案在Pytorch中为我们提供了一个非常简单的方法来支持但主机多GPU那就`torch.nn.DataParalle` 我们只要将我们自己的模型作为参数直接传入即可剩下的事情Pytorch都为我们做了"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#使用内置的一个模型我们这里以resnet50为例\n",
"model = torchvision.models.resnet50()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DataParallel(\n",
" (module): ResNet(\n",
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
" (layer1): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (layer2): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (layer3): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (4): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (5): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (layer4): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)\n",
" (fc): Linear(in_features=2048, out_features=1000, bias=True)\n",
" )\n",
")"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#模型使用多GPU\n",
"mdp = torch.nn.DataParallel(model)\n",
"mdp"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"只要这样一个简单的包裹Pytorch已经为我们做了很多复杂的工作。我们只需要增大我们训练的batch_size(一般计算为N倍N为显卡数量),其他代码不需要任何改动。\n",
"虽然代码不需要做更改但是batch size太大了训练收敛会很慢所以还要把学习率调大一点。大学率也会使得模型的训练在早期的阶段变得十分不稳定所以这里需要一个学习率的热身warm up 来稳定梯度的下降,然后在逐步的提高学习率。\n",
"\n",
"这种热身只有在超级大的批次下才需要进行一般我们这种一机4卡或者说在batch size 小于 5000个人测试基本上是不需要的。例如最近富士通使用2048个GPU,74秒训练完成resnet50的实验中使用的batch size 为 81920 [arivx](http://www.arxiv.org/abs/1903.12650)这种超大的size才需要。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"DataParallel的并行处理机制是首先将模型加载到主 GPU 上(默认的第一个GPUGPU0为主GPU),然后再将模型复制到各个指定的从 GPU 中,然后将输入数据按 batch 维度进行划分,具体来说就是每个 GPU 分配到的数据 batch 数量是总输入数据的 batch 除以指定 GPU 个数。每个 GPU 将针对各自的输入数据独立进行 forward 计算,最后将各个 GPU 的 loss 进行求和,再用反向传播更新单个 GPU 上的模型参数,再将更新后的模型参数复制到剩余指定的 GPU 中,这样就完成了一次迭代计算。\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"DataParallel其实也是一个nn.Model所以我们可以保存权重的方法和一般的nn.Model没有区别只不过如果你想使用单卡或者cpu作为推理的时候需要从里面读出原始的model "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ResNet(\n",
" (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
" (layer1): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (layer2): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (layer3): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (3): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (4): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (5): Bottleneck(\n",
" (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (layer4): Sequential(\n",
" (0): Bottleneck(\n",
" (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" (downsample): Sequential(\n",
" (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n",
" (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" )\n",
" )\n",
" (1): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" (2): Bottleneck(\n",
" (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
" (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
" (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
" (relu): ReLU(inplace)\n",
" )\n",
" )\n",
" (avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)\n",
" (fc): Linear(in_features=2048, out_features=1000, bias=True)\n",
")"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#获取到原始的model\n",
"m=mdp.module\n",
"m"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"DataParallel会将定义的网络模型参数默认放在GPU 0上所以dataparallel实质是可以看做把训练参数从GPU拷贝到其他的GPU同时训练这样会导致内存和GPU使用率出现很严重的负载不均衡现象即GPU 0的使用内存和使用率会大大超出其他显卡的使用内存因为在这里GPU0作为master来进行梯度的汇总和模型的更新再将计算任务下发给其他GPU所以他的内存和使用率会比其他的高。\n",
"\n",
"所以我们使用新的torch.distributed来构建更为同步的分布式运算。使用torch.distributed不仅可以支持单机还可以支持多个主机多个GPU进行计算。"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4.5.2 torch.distributed\n",
"`torch.distributed`相对于`torch.nn.DataParalle` 是一个底层的API所以我们要修改我们的代码使其能够独立的在机器节点中运行。我们想要完全实现分布式并且在每个结点的每个GPU上独立运行进程这一共需要N个进程。N是我们的GPU总数这里我们以4来计算。\n",
"\n",
"首先 初始化分布式后端,封装模型以及准备数据,这些数据用于在独立的数据子集中训练进程。修改后的代码如下"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 以下脚本在jupyter notebook执行肯定会不成功请保存成py文件后测试\n",
"import torch\n",
"import argparse\n",
"from torch.utils.data.distributed import DistributedSampler\n",
"from torch.utils.data import DataLoader\n",
"\n",
"# 这里的node_rank是本地GPU的标识\n",
"parser = argparse.ArgumentParser()\n",
"parser.add_argument(\"--node_rank\", type=int)\n",
"args = parser.parse_args()\n",
"\n",
"# 使用Nvdea的nccl来初始化节点 \n",
"torch.distributed.init_process_group(backend='nccl')\n",
"\n",
"# 封装分配给当前进程的GPU上的模型\n",
"device = torch.device('cuda', arg.local_rank)\n",
"model = model.to(device)\n",
"distrib_model = torch.nn.parallel.DistributedDataParallel(model,\n",
" device_ids=[args.node_rank],\n",
" output_device=args.node_rank)\n",
"\n",
"# 将数据加载限制为数据集的子集(不包括当前进程)\n",
"sampler = DistributedSampler(dataset)\n",
"\n",
"dataloader = DataLoader(dataset, sampler=sampler)\n",
"for inputs, labels in dataloader:\n",
" predictions = distrib_model(inputs.to(device)) # 正向传播\n",
" loss = loss_function(predictions, labels.to(device)) # 计算损失\n",
" loss.backward() # 反向传播\n",
" optimizer.step() # 优化\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"在运行时我们也不能简单的使用`python 文件名`来执行了我们这里需要使用PyTorch中为我们准备好的torch.distributed.launch运行脚本。它能自动进行环境变量的设置并使用正确的node_rank参数调用脚本。\n",
"\n",
"这里我们要准备一台机器作为master所有的机器都要求能对它进行访问。因此它需要拥有一个可以访问的IP地址示例中为196.168.100.100以及一个开放的端口示例中为6666。我们将使用torch.distributed.launch在第一台机器上运行脚本\n",
"```bash\n",
"python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr=\"192.168.100.100\" --master_port=6666 文件名 (--arg1 --arg2 等其他参数)\n",
"```\n",
"第二台主机上只需要更改 `--node_rank=0`即可"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"很有可能你在运行的时候报错那是因为我们没有设置NCCL socket网络接口\n",
"我们以网卡名为ens3为例输入\n",
"```bash\n",
"export NCCL_SOCKET_IFNAME=ens3\n",
"```\n",
"ens3这个名称 可以使用ifconfig命令查看确认 "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"参数说明:\n",
"\n",
"--nproc_per_node 主机中包含的GPU总数\n",
"\n",
"--nnodes 总计的主机数\n",
"\n",
"--node_rank 主机中的GPU标识\n",
"\n",
"其他一些参数可以查看[官方的文档](https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"torch.distributed 不仅支持nccl还支持其他的两个后端 gloo和mpi具体的对比这里就不细说了请查看[官方的文档](https://pytorch.org/docs/stable/distributed.html)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4.5.3 torch.utils.checkpoint\n",
"在我们训练时,可能会遇到(目前我还没遇到)训练集的单个样本比内存还要大根本载入不了,那我我们如何来训练呢?\n",
"\n",
"pytorch为我们提供了梯度检查点gradient-checkpointing节省计算资源梯度检查点会将我们连续计算的元正向和元反向传播切分成片段。但由于需要增加额外的计算以减少内存需求该方法效率会有一些下降但是它在某些示例中有较为明显的优势比如在长序列上训练RNN模型这个由于复现难度较大 就不介绍了,官方文档在[这里](https://pytorch.org/docs/stable/checkpoint.html) 遇到这种情况的朋友可以查看下官方的解决方案。"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Machine Learning",
"language": "python",
"name": "ml"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autoclose": false,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": true
}
},
"nbformat": 4,
"nbformat_minor": 2
}