359 lines
9.9 KiB
Plaintext
359 lines
9.9 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# PyTorch 基础 :数据的加载和预处理\n",
|
||
"PyTorch通过torch.utils.data对一般常用的数据加载进行了封装,可以很容易地实现多线程数据预读和批量加载。\n",
|
||
"并且torchvision已经预先实现了常用图像数据集,包括前面使用过的CIFAR-10,ImageNet、COCO、MNIST、LSUN等数据集,可通过torchvision.datasets方便的调用"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'1.0.1.post2'"
|
||
]
|
||
},
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# 首先要引入相关的包\n",
|
||
"import torch\n",
|
||
"#打印一下版本\n",
|
||
"torch.__version__"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Dataset\n",
|
||
"Dataset是一个抽象类,为了能够方便的读取,需要将要使用的数据包装为Dataset类。\n",
|
||
"自定义的Dataset需要继承它并且实现两个成员方法:\n",
|
||
"1. `__getitem__()` 该方法定义用索引(`0` 到 `len(self)`)获取一条数据或一个样本\n",
|
||
"2. `__len__()` 该方法返回数据集的总长度\n",
|
||
"\n",
|
||
"下面我们使用kaggle上的一个竞赛[bluebook for bulldozers](https://www.kaggle.com/c/bluebook-for-bulldozers/data)自定义一个数据集,为了方便介绍,我们使用里面的数据字典来做说明(因为条数少)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#引用\n",
|
||
"from torch.utils.data import Dataset\n",
|
||
"import pandas as pd"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#定义一个数据集\n",
|
||
"class BulldozerDataset(Dataset):\n",
|
||
" \"\"\" 数据集演示 \"\"\"\n",
|
||
" def __init__(self, csv_file):\n",
|
||
" \"\"\"实现初始化方法,在初始化的时候将数据读载入\"\"\"\n",
|
||
" self.df=pd.read_csv(csv_file)\n",
|
||
" def __len__(self):\n",
|
||
" '''\n",
|
||
" 返回df的长度\n",
|
||
" '''\n",
|
||
" return len(self.df)\n",
|
||
" def __getitem__(self, idx):\n",
|
||
" '''\n",
|
||
" 根据 idx 返回一行数据\n",
|
||
" '''\n",
|
||
" return self.df.iloc[idx].SalePrice"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"至此,我们的数据集已经定义完成了,我们可以实例化一个对象访问它"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ds_demo= BulldozerDataset('median_benchmark.csv')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"我们可以直接使用如下命令查看数据集数据\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"11573"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"#实现了 __len__ 方法所以可以直接使用len获取数据总数\n",
|
||
"len(ds_demo)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"24000.0"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"#用索引可以直接访问对应的数据,对应 __getitem__ 方法\n",
|
||
"ds_demo[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"自定义的数据集已经创建好了,下面我们使用官方提供的数据载入器,读取数据\n",
|
||
"## Dataloader\n",
|
||
"DataLoader为我们提供了对Dataset的读取操作,常用参数有:batch_size(每个batch的大小)、 shuffle(是否进行shuffle操作)、 num_workers(加载数据的时候使用几个子进程)。下面做一个简单的操作"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"dl = torch.utils.data.DataLoader(ds_demo, batch_size=10, shuffle=True, num_workers=0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"DataLoader返回的是一个可迭代对象,我们可以使用迭代器分次获取数据"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"tensor([24000., 24000., 24000., 24000., 24000., 24000., 24000., 24000., 24000.,\n",
|
||
" 24000.], dtype=torch.float64)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"idata=iter(dl)\n",
|
||
"print(next(idata))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"常见的用法是使用for循环对其进行遍历"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"0 tensor([24000., 24000., 24000., 24000., 24000., 24000., 24000., 24000., 24000.,\n",
|
||
" 24000.], dtype=torch.float64)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for i, data in enumerate(dl):\n",
|
||
" print(i,data)\n",
|
||
" # 为了节约空间,这里只循环一遍\n",
|
||
" break"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"我们已经可以通过dataset定义数据集,并使用Datalorder载入和遍历数据集,除了这些以外,PyTorch还提供能torcvision的计算机视觉扩展包,里面封装了\n",
|
||
"## torchvision 包\n",
|
||
"torchvision 是PyTorch中专门用来处理图像的库,PyTorch官网的安装教程中最后的pip install torchvision 就是安装这个包。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### torchvision.datasets\n",
|
||
"torchvision.datasets 可以理解为PyTorch团队自定义的dataset,这些dataset帮我们提前处理好了很多的图片数据集,我们拿来就可以直接使用:\n",
|
||
"- MNIST\n",
|
||
"- COCO\n",
|
||
"- Captions\n",
|
||
"- Detection\n",
|
||
"- LSUN\n",
|
||
"- ImageFolder\n",
|
||
"- Imagenet-12\n",
|
||
"- CIFAR\n",
|
||
"- STL10\n",
|
||
"- SVHN\n",
|
||
"- PhotoTour\n",
|
||
"我们可以直接使用,示例如下:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import torchvision.datasets as datasets\n",
|
||
"trainset = datasets.MNIST(root='./data', # 表示 MNIST 数据的加载的目录\n",
|
||
" train=True, # 表示是否加载数据库的训练集,false的时候加载测试集\n",
|
||
" download=True, # 表示是否自动下载 MNIST 数据集\n",
|
||
" transform=None) # 表示是否需要对数据进行预处理,none为不进行预处理\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### torchvision.models\n",
|
||
"torchvision不仅提供了常用图片数据集,还提供了训练好的模型,可以加载之后,直接使用,或者在进行迁移学习\n",
|
||
"torchvision.models模块的 子模块中包含以下模型结构。\n",
|
||
"- AlexNet\n",
|
||
"- VGG\n",
|
||
"- ResNet\n",
|
||
"- SqueezeNet\n",
|
||
"- DenseNet"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#我们直接可以使用训练好的模型,当然这个与datasets相同,都是需要从服务器下载的\n",
|
||
"import torchvision.models as models\n",
|
||
"resnet18 = models.resnet18(pretrained=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### torchvision.transforms\n",
|
||
"transforms 模块提供了一般的图像转换操作类,用作数据处理和数据增强"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from torchvision import transforms as transforms\n",
|
||
"transform = transforms.Compose([\n",
|
||
" transforms.RandomCrop(32, padding=4), #先四周填充0,在把图像随机裁剪成32*32\n",
|
||
" transforms.RandomHorizontalFlip(), #图像一半的概率翻转,一半的概率不翻转\n",
|
||
" transforms.RandomRotation((-45,45)), #随机旋转\n",
|
||
" transforms.ToTensor(),\n",
|
||
" transforms.Normalize((0.4914, 0.4822, 0.4465), (0.229, 0.224, 0.225)), #R,G,B每层的归一化用到的均值和方差\n",
|
||
"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"肯定有人会问:(0.485, 0.456, 0.406), (0.2023, 0.1994, 0.2010) 这几个数字是什么意思?\n",
|
||
"\n",
|
||
"官方的这个帖子有详细的说明:\n",
|
||
"https://discuss.pytorch.org/t/normalization-in-the-mnist-example/457/21\n",
|
||
"这些都是根据ImageNet训练的归一化参数,可以直接使用,我们认为这个是固定值就可以"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"我们已经完成了Python的基本内容的介绍,下面我们要介绍神经网络的理论基础,里面的公式等内容我们都使用PyTorch来实现"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.8"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|