530 lines
17 KiB
Plaintext
530 lines
17 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 47,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"'1.3.0'"
|
||
]
|
||
},
|
||
"execution_count": 47,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import torch\n",
|
||
"import numpy as np\n",
|
||
"import torch.nn as nn\n",
|
||
"import torch.nn.functional as F\n",
|
||
"from PIL import Image\n",
|
||
"from torchvision import transforms\n",
|
||
"from torchvision import models,datasets\n",
|
||
"torch.__version__"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# 4.2.2 使用Tensorboard在 PyTorch 中进行可视化 \n",
|
||
"\n",
|
||
"## Tensorboard 简介\n",
|
||
"Tensorboard是tensorflow内置的一个可视化工具,它通过将tensorflow程序输出的日志文件的信息可视化使得tensorflow程序的理解、调试和优化更加简单高效。\n",
|
||
"Tensorboard的可视化依赖于tensorflow程序运行输出的日志文件,因而tensorboard和tensorflow程序在不同的进程中运行。\n",
|
||
"TensorBoard给我们提供了极其方便而强大的可视化环境。它可以帮助我们理解整个神经网络的学习过程、数据的分布、性能瓶颈等等。\n",
|
||
"\n",
|
||
"tensorboard虽然是tensorflow内置的可视化工具,但是他们跑在不同的进程中,所以Github上已经有大神将tensorboard应用到Pytorch中 [链接在这里]( https://github.com/lanpa/tensorboardX)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Tensorboard 安装\n",
|
||
"首先需要安装tensorboard\n",
|
||
"\n",
|
||
"`pip install tensorboard`\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"~~ 然后再安装tensorboardx ~~\n",
|
||
"\n",
|
||
"~~ `pip install tensorboardx` ~~\n",
|
||
"pytorch 1.1以后的版本内置了SummaryWriter 函数,所以不需要再安装tensorboardx了\n",
|
||
"\n",
|
||
"安装完成后与 visdom一样执行独立的命令\n",
|
||
"`tensorboard --logdir logs` 即可启动,默认的端口是 6006,在浏览器中打开 `http://localhost:6006/` 即可看到web页面。\n",
|
||
"\n",
|
||
"这里要说明的是 微软的Edge浏览器css会无法加载,使用chrome正常显示"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 页面\n",
|
||
"与visdom不同,tensorboard针对不同的类型人为的区分多个标签,每一个标签页面代表不同的类型。\n",
|
||
"下面我们根据不同的页面功能做个简单的介绍,更多详细内容请参考官网\n",
|
||
"### SCALAR\n",
|
||
"对标量数据进行汇总和记录,通常用来可视化训练过程中随着迭代次数准确率(val acc)、损失值(train/test loss)、学习率(learning rate)、每一层的权重和偏置的统计量(mean、std、max/min)等的变化曲线\n",
|
||
"### IMAGES\n",
|
||
"可视化当前轮训练使用的训练/测试图片或者 feature maps\n",
|
||
"### GRAPHS\n",
|
||
"可视化计算图的结构及计算图上的信息,通常用来展示网络的结构\n",
|
||
"### HISTOGRAMS\n",
|
||
"可视化张量的取值分布,记录变量的直方图(统计张量随着迭代轮数的变化情况)\n",
|
||
"### PROJECTOR\n",
|
||
"全称Embedding Projector 高维向量进行可视化"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 使用\n",
|
||
"在使用前请先去确认执行`tensorboard --logdir logs` 并保证 `http://localhost:6006/` 页面能够正常打开\n",
|
||
"\n",
|
||
"### 图像展示\n",
|
||
"首先介绍比较简单的功能,查看我们训练集和数据集中的图像,这里我们使用现成的图像作为展示。这里使用wikipedia上的一张猫的图片[这里](https://en.wikipedia.org/wiki/Cat#/media/File:Felis_silvestris_catus_lying_on_rice_straw.jpg)\n",
|
||
"\n",
|
||
"引入 tensorboardX 包"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 48,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 这里的引用也要修改成torch的引用\n",
|
||
"#from tensorboardX import SummaryWriter\n",
|
||
"from torch.utils.tensorboard import SummaryWriter"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 49,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(1280, 853)"
|
||
]
|
||
},
|
||
"execution_count": 49,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"cat_img = Image.open('./1280px-Felis_silvestris_catus_lying_on_rice_straw.jpg')\n",
|
||
"cat_img.size"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"这是一张1280x853的图,我们先把她变成224x224的图片,因为后面要使用的是vgg16"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 50,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"transform_224 = transforms.Compose([\n",
|
||
" transforms.Resize(224), # 这里要说明下 Scale 已经过期了,使用Resize\n",
|
||
" transforms.CenterCrop(224),\n",
|
||
" transforms.ToTensor(),\n",
|
||
" ])\n",
|
||
"cat_img_224=transform_224(cat_img)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"将图片展示在tebsorboard中:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 51,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"writer = SummaryWriter(log_dir='./logs', comment='cat image') # 这里的logs要与--logdir的参数一样\n",
|
||
"writer.add_image(\"cat\",cat_img_224)\n",
|
||
"writer.close()# 执行close立即刷新,否则将每120秒自动刷新"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"浏览器访问 `http://localhost:6006/#images` 即可看到猫的图片 \n",
|
||
"### 更新损失函数\n",
|
||
"更新损失函数和训练批次我们与visdom一样使用模拟展示,这里用到的是tensorboard的SCALAR页面"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 52,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"x = torch.FloatTensor([100])\n",
|
||
"y = torch.FloatTensor([500])\n",
|
||
"\n",
|
||
"for epoch in range(30):\n",
|
||
" x = x * 1.2\n",
|
||
" y = y / 1.1\n",
|
||
" loss = np.random.random()\n",
|
||
" with SummaryWriter(log_dir='./logs', comment='train') as writer: #可以直接使用python的with语法,自动调用close方法\n",
|
||
" writer.add_histogram('his/x', x, epoch)\n",
|
||
" writer.add_histogram('his/y', y, epoch)\n",
|
||
" writer.add_scalar('data/x', x, epoch)\n",
|
||
" writer.add_scalar('data/y', y, epoch)\n",
|
||
" writer.add_scalar('data/loss', loss, epoch)\n",
|
||
" writer.add_scalars('data/data_group', {'x': x,\n",
|
||
" 'y': y}, epoch)\n",
|
||
"\n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"浏览器访问 `http://localhost:6006/#scalars` 即可看到图形\n",
|
||
"### 使用PROJECTOR对高维向量可视化\n",
|
||
"PROJECTOR的的原理是通过PCA,T-SNE等方法将高维向量投影到三维坐标系(降维度)。Embedding Projector从模型运行过程中保存的checkpoint文件中读取数据,默认使用主成分分析法(PCA)将高维数据投影到3D空间中,也可以通过设置设置选择T-SNE投影方法,这里做一个简单的展示。\n",
|
||
"\n",
|
||
"我们还是用第三章的mnist代码"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 53,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"BATCH_SIZE=512 \n",
|
||
"EPOCHS=20 \n",
|
||
"train_loader = torch.utils.data.DataLoader(\n",
|
||
" datasets.MNIST('data', train=True, download=True, \n",
|
||
" transform=transforms.Compose([\n",
|
||
" transforms.ToTensor(),\n",
|
||
" transforms.Normalize((0.1307,), (0.3081,))\n",
|
||
" ])),\n",
|
||
" batch_size=BATCH_SIZE, shuffle=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 54,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class ConvNet(nn.Module):\n",
|
||
" def __init__(self):\n",
|
||
" super().__init__()\n",
|
||
" # 1,28x28\n",
|
||
" self.conv1=nn.Conv2d(1,10,5) # 10, 24x24\n",
|
||
" self.conv2=nn.Conv2d(10,20,3) # 128, 10x10\n",
|
||
" self.fc1 = nn.Linear(20*10*10,500)\n",
|
||
" self.fc2 = nn.Linear(500,10)\n",
|
||
" def forward(self,x):\n",
|
||
" in_size = x.size(0)\n",
|
||
" out = self.conv1(x) #24\n",
|
||
" out = F.relu(out)\n",
|
||
" out = F.max_pool2d(out, 2, 2) #12\n",
|
||
" out = self.conv2(out) #10\n",
|
||
" out = F.relu(out)\n",
|
||
" out = out.view(in_size,-1)\n",
|
||
" out = self.fc1(out)\n",
|
||
" out = F.relu(out)\n",
|
||
" out = self.fc2(out)\n",
|
||
" out = F.log_softmax(out,dim=1)\n",
|
||
" return out\n",
|
||
"model = ConvNet()\n",
|
||
"optimizer = torch.optim.Adam(model.parameters())"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 55,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def train(model, train_loader, optimizer, epoch):\n",
|
||
" n_iter=0\n",
|
||
" model.train()\n",
|
||
" for batch_idx, (data, target) in enumerate(train_loader):\n",
|
||
" optimizer.zero_grad()\n",
|
||
" output = model(data)\n",
|
||
" loss = F.nll_loss(output, target)\n",
|
||
" loss.backward()\n",
|
||
" optimizer.step()\n",
|
||
" if(batch_idx+1)%30 == 0: \n",
|
||
" n_iter=n_iter+1\n",
|
||
" print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n",
|
||
" epoch, batch_idx * len(data), len(train_loader.dataset),\n",
|
||
" 100. * batch_idx / len(train_loader), loss.item()))\n",
|
||
" #相对于以前的训练方法 主要增加了以下内容\n",
|
||
" out = torch.cat((output.data, torch.ones(len(output), 1)), 1) # 因为是投影到3D的空间,所以我们只需要3个维度\n",
|
||
" with SummaryWriter(log_dir='./logs', comment='mnist') as writer: \n",
|
||
" #使用add_embedding方法进行可视化展示\n",
|
||
" writer.add_embedding(\n",
|
||
" out,\n",
|
||
" metadata=target.data,\n",
|
||
" label_img=data.data,\n",
|
||
" global_step=n_iter)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"这里节省时间,只训练一次"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 56,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Train Epoch: 0 [14848/60000 (25%)]\tLoss: 0.352312\n",
|
||
"Train Epoch: 0 [30208/60000 (50%)]\tLoss: 0.202950\n",
|
||
"Train Epoch: 0 [45568/60000 (75%)]\tLoss: 0.156494\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"train(model, train_loader, optimizer, 0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"打开 `http://localhost:6006/#projector` 即可看到效果。\n",
|
||
"\n",
|
||
"目前测试投影这部分也是有问题的,根据官网文档的代码进行测试,也显示不出来,正在找原因\n",
|
||
"\n",
|
||
"### 绘制网络结构\n",
|
||
"在pytorch中我们可以使用print直接打印出网络的结构,但是这种方法可视化效果不好,这里使用tensorboard的GRAPHS来实现网络结构的可视化。\n",
|
||
"由于pytorch使用的是动态图计算,所以我们这里要手动进行一次前向的传播.\n",
|
||
"\n",
|
||
"使用Pytorch已经构建好的模型进行展示"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 57,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"VGG(\n",
|
||
" (features): Sequential(\n",
|
||
" (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (1): ReLU(inplace=True)\n",
|
||
" (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (3): ReLU(inplace=True)\n",
|
||
" (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
||
" (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (6): ReLU(inplace=True)\n",
|
||
" (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (8): ReLU(inplace=True)\n",
|
||
" (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
||
" (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (11): ReLU(inplace=True)\n",
|
||
" (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (13): ReLU(inplace=True)\n",
|
||
" (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (15): ReLU(inplace=True)\n",
|
||
" (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
||
" (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (18): ReLU(inplace=True)\n",
|
||
" (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (20): ReLU(inplace=True)\n",
|
||
" (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (22): ReLU(inplace=True)\n",
|
||
" (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
||
" (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (25): ReLU(inplace=True)\n",
|
||
" (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (27): ReLU(inplace=True)\n",
|
||
" (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n",
|
||
" (29): ReLU(inplace=True)\n",
|
||
" (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
||
" )\n",
|
||
" (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))\n",
|
||
" (classifier): Sequential(\n",
|
||
" (0): Linear(in_features=25088, out_features=4096, bias=True)\n",
|
||
" (1): ReLU(inplace=True)\n",
|
||
" (2): Dropout(p=0.5, inplace=False)\n",
|
||
" (3): Linear(in_features=4096, out_features=4096, bias=True)\n",
|
||
" (4): ReLU(inplace=True)\n",
|
||
" (5): Dropout(p=0.5, inplace=False)\n",
|
||
" (6): Linear(in_features=4096, out_features=1000, bias=True)\n",
|
||
" )\n",
|
||
")\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"vgg16 = models.vgg16(pretrained=True) # 这里下载预训练好的模型\n",
|
||
"print(vgg16) # 打印一下这个模型"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"在前向传播前,先要把图片做一些调整"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 58,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"transform_2 = transforms.Compose([\n",
|
||
" transforms.Resize(224), \n",
|
||
" transforms.CenterCrop((224,224)),\n",
|
||
" transforms.ToTensor(),\n",
|
||
" transforms.Normalize(mean=[0.485, 0.456, 0.406],\n",
|
||
" std=[0.229, 0.224, 0.225])\n",
|
||
"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"使用上一张猫的图片进行前向传播"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 59,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"torch.Size([1, 3, 224, 224])"
|
||
]
|
||
},
|
||
"execution_count": 59,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"vgg16_input=transform_2(cat_img)[np.newaxis]# 因为pytorch的是分批次进行的,所以我们这里建立一个批次为1的数据集\n",
|
||
"vgg16_input.shape"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"开始前向传播,打印输出值"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 60,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"287"
|
||
]
|
||
},
|
||
"execution_count": 60,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"out = vgg16(vgg16_input)\n",
|
||
"_, preds = torch.max(out.data, 1)\n",
|
||
"label=preds.numpy()[0]\n",
|
||
"label"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"将结构图在tensorboard进行展示"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 61,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"with SummaryWriter(log_dir='./logs', comment='vgg161') as writer:\n",
|
||
" writer.add_graph(vgg16, vgg16_input)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"对于Pytorch的1.3版本来说,实测 SummaryWriter在处理结构图的时候是有问题的(或者是需要加什么参数,目前我还没找到),所以建议大家继续使用tensorboardx。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "deep learning",
|
||
"language": "python",
|
||
"name": "dl"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.9"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|